Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C23

Direct product G=N×Q with N=C2 and Q=S3×C23
dρLabelID
S3×C2448S3xC2^496,230


Non-split extensions G=N.Q with N=C2 and Q=S3×C23
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C23) = S3×C22×C4central extension (φ=1)48C2.1(S3xC2^3)96,206
C2.2(S3×C23) = C23×Dic3central extension (φ=1)96C2.2(S3xC2^3)96,218
C2.3(S3×C23) = C22×Dic6central stem extension (φ=1)96C2.3(S3xC2^3)96,205
C2.4(S3×C23) = C22×D12central stem extension (φ=1)48C2.4(S3xC2^3)96,207
C2.5(S3×C23) = C2×C4○D12central stem extension (φ=1)48C2.5(S3xC2^3)96,208
C2.6(S3×C23) = C2×S3×D4central stem extension (φ=1)24C2.6(S3xC2^3)96,209
C2.7(S3×C23) = C2×D42S3central stem extension (φ=1)48C2.7(S3xC2^3)96,210
C2.8(S3×C23) = D46D6central stem extension (φ=1)244C2.8(S3xC2^3)96,211
C2.9(S3×C23) = C2×S3×Q8central stem extension (φ=1)48C2.9(S3xC2^3)96,212
C2.10(S3×C23) = C2×Q83S3central stem extension (φ=1)48C2.10(S3xC2^3)96,213
C2.11(S3×C23) = Q8.15D6central stem extension (φ=1)484C2.11(S3xC2^3)96,214
C2.12(S3×C23) = S3×C4○D4central stem extension (φ=1)244C2.12(S3xC2^3)96,215
C2.13(S3×C23) = D4○D12central stem extension (φ=1)244+C2.13(S3xC2^3)96,216
C2.14(S3×C23) = Q8○D12central stem extension (φ=1)484-C2.14(S3xC2^3)96,217
C2.15(S3×C23) = C22×C3⋊D4central stem extension (φ=1)48C2.15(S3xC2^3)96,219

׿
×
𝔽